Geschichte der speziellen Relativitätstheorie

Die Geschichte der speziellen Relativitätstheorie bezeichnet die Entwicklung von empirischen und konzeptionellen Vorschlägen und Erkenntnissen innerhalb der theoretischen Physik, die zu einem neuen Verständnis von Raum und Zeit führten. Nach einer Reihe von theoretischen und experimentellen Vorarbeiten verschiedener Autoren im 19. Jahrhundert wurde diese Entwicklung in den Jahren um 1900 insbesondere von Hendrik Antoon Lorentz und Henri Poincaré eingeleitet und gipfelte 1905 in der Ausarbeitung der speziellen Relativitätstheorie durch
Albert Einstein. In der Folge wurde die Theorie weiter ausgebaut, vor allem durch

Hermann Minkowski.

1. Überblick

Isaac Newton war in seinen 1687 publizierten Principia von einem absoluten Raum und einer absoluten Zeit ausgegangen. Gleichwohl galt auch in seiner Theorie das Relativitätsprinzip von Galileo Galilei, wonach alle relativ zueinander gleichförmig bewegten Beobachter ihren absoluten Bewegungszustand nicht bestimmen können. Ihre Perspektiven sind demnach gleichberechtigt und der Galilei-Transformation unterworfen; es gibt kein privilegiertes Bezugssystem. Ende des 19. Jahrhunderts betonten verschiedene Physiker, genau genommen führe dies zu einer Vervielfältigung „absoluter Räume“ – so etwa Ludwig Lange, der 1885 den operational begründeten Begriff Inertialsystem einführte. Ernst Mach sah die Absolutheit von Raum und Zeit nicht hinreichend phänomenologisch-empirisch fundiert.[1]

 

Das Gegenstück zum „absoluten Raum“ der Mechanik war der Äther in der Elektrodynamik. Dieses Konzept beruht auf der bis Anfang des 20. Jahrhunderts nicht hinterfragten Annahme, dass Wellen zu ihrer Ausbreitung ein Medium benötigen, wie der Schall die Luft braucht, so das Licht den Äther, der überdies als stofflich vorgestellt wurde. James Clerk Maxwell hatte diese Voraussetzung so formuliert, dass sich alle optischen und elektrischen Phänomene in einem Medium ausbreiten. Unter diesen Vorannahmen hat die Lichtgeschwindigkeit den durch die maxwellschen Gleichungen angegebenen Wert nur relativ zum Äther. Infolge der damals weit verbreiteten Annahme, dass der Äther ruht und nicht von der Erde mitgeführt wird, wäre es möglich, den Bewegungszustand der Erde relativ zum Äther zu bestimmen und diesen somit als ein ausgezeichnetes Bezugssystem zu verwenden. Allerdings scheiterten alle Versuche, die Relativbewegung der Erde zu ihm zu bestimmen.[2]

 

Dies führte ab 1892 zur Entwicklung der maxwell-lorentzschen Elektrodynamik durch Hendrik Antoon Lorentz, welche auf einem absolut ruhenden Äther beruhte. Dessen Unauffindbarkeit wurde durch die Annahmen erklärt, dass im Äther bewegte Körper verkürzt sind (Längenkontraktion), und Prozesse bei im Äther bewegten Körpern verlangsamt ablaufen (Zeitdilatation). Grundlage dafür war jedoch, dass die Galilei-Transformation durch die Lorentz-Transformation ersetzt wurde. Lorentz konnte in seiner nachfolgenden Arbeit von 1904 das Relativitätsprinzip jedoch nur unvollkommen erfüllen.[3] Henri Poincaré erkannte 1904, dass die Unüberschreitbarkeit der Lichtgeschwindigkeit für alle Beobachter das Hauptmerkmal der „neuen Mechanik“ (also der lorentzschen Theorie) war. 1905 gelang ihm eine vollständige physikalische Verallgemeinerung und mathematisch elegante Formalisierung der lorentzschen Elektrodynamik, wobei er das Relativitätsprinzip als universell gültiges Naturgesetz einschließlich der Elektrodynamik und Gravitation festlegte – jedoch hielt er weiterhin an der Existenz eines Äthers und der Unterscheidung zwischen „wahren“ und „scheinbaren“ Längen und Zeiten fest.

 

Albert Einstein gelang 1905 mit der speziellen Relativitätstheorie (SRT) schließlich durch Wandlung der Begriffe von Raum und Zeit und durch Abschaffung des Äthers eine völlige Neuinterpretation der lorentzschen Elektrodynamik.[4] Diese Ergebnisse leitete Einstein ausschließlich aus dem Relativitätsprinzip und dem Prinzip der Konstanz der Lichtgeschwindigkeit, die er als Postulate seiner Theorie zugrunde legte, ab. Durch die Abschaffung der Konzeption eines Äthers gab es nun keinen Grund mehr für eine Unterscheidung zwischen „wahren“ und „scheinbaren“ Koordinaten, wie noch bei Poincaré und Lorentz. Dies alles machte den Weg zu relativistischen Feldtheorien und zur Entwicklung der allgemeinen Relativitätstheorie (ART) frei. Die Untersuchungen zur SRT wurden nach Einstein unter anderem durch Hermann Minkowski fortgesetzt, der 1907 die formalen Grundlagen für das heute übliche Konzept der vierdimensionalen Raumzeit 
entwickelte.

2. Äther und Elektrodynamik bewegter Körper

2.1. Äthermodelle und maxwellsche Gleichungen

Im 19. Jahrhundert war man vor allem durch die Arbeiten von Thomas Young (1804) und Augustin Jean Fresnel (1816) zur Überzeugung gelangt, dass Licht sich als eine Transversalwelle in einem Medium („Lichtäther“) ausbreitet, welches von vielen als ein elastischer Festkörper aufgefasst wurde. Es wurde jedoch weiterhin zwischen optischen Phänomenen einerseits, elektrodynamischen andererseits unterschieden. Das heißt, es mussten für diese Phänomene jeweils eigene Äthervarianten konstruiert werden. Versuche, diese Äthervarianten zu vereinigen und eine vollständig gültige mechanische Beschreibung des Äthers vorzulegen, scheiterten jedoch.[5]

 

Nach Vorarbeiten von Physikern wie Michael Faraday, Lord Kelvin und anderen entwickelte James Clerk Maxwell (1864) nun grundlegende Gleichungen für Elektrizität und Magnetismus, die so genannten maxwellschen Gleichungen. Dabei entwarf er ein Modell, in dem die Phänomene der Optik als auch der Elektrodynamik zusammen auf einen einzigen, elektromagnetischen Äther zurückzuführen sind, und definierte Licht als eine elektromagnetische Welle, welche sich konstant mit Lichtgeschwindigkeit in Bezug zum Äther ausbreitete.[6] Als weitere wichtige Konsequenz der Theorie wurde von Maxwell (1873) die Existenz von elektrostatischen und magnetischen „Spannungen“ abgeleitet, die einen Druck auf Körper ausüben können − eine unmittelbare Folge davon ist der vom Licht ausgeübte Strahlungsdruck. Adolfo Bartoli (1876) leitete die Existenz desselben Drucks aus thermodynamischen Überlegungen ab.[7]

 

Nachdem Heinrich Hertz (1887) die Existenz von elektromagnetischen Wellen nachgewiesen hatte, wurde die maxwellsche Theorie schließlich weithin akzeptiert. Oliver Heaviside (1889) und Hertz (1890 a,b) führten dabei modernisierte Versionen der maxwellschen Gleichungen ein, die eine wichtige Grundlage für die weitere Entwicklung der Elektrodynamik bildeten („maxwell-hertzsche“ bzw. „heaviside-hertzsche“ Gleichungen). Dabei war es schließlich die von Heaviside gegebene Form, welche sich allgemein durchsetzte. Anfang 1900 wurde die hertzsche Theorie jedoch experimentell widerlegt und musste aufgegeben werden.[8][9] Hertz selbst war dabei einer der letzten Anhänger des „mechanistischen Weltbildes“, wonach alle elektromagnetischen Prozesse auf mechanische Stoß- und Kontaktwirkungen im Äther zurückgeführt werden sollten.[10]

2.2. Unauffindbarkeit des Äthers

Was nun den Bewegungszustand des Äthers relativ zur Materie betraf, wurden prinzipiell zwei Möglichkeiten in Betracht gezogen, welche bereits vor den Arbeiten Maxwells diskutiert wurden:

 

1.    die von Fresnel (1816) und später von Hendrik Antoon Lorentz (1892a) vertretene Vorstellung eines ruhenden bzw. nur teilweise mit einem bestimmten Koeffizienten mitgeführten Äther,[11] und

2.    die von George Gabriel Stokes (1845) und später von Hertz (1890b) angenommene vollständige Mitführung des Äthers durch die Materie.[12]

 

Fresnels Theorie wurde bevorzugt, weil mit seiner Theorie die Aberration des Lichtes und viele optische Phänomene erklärt werden konnten und weil sein Mitführungskoeffizient von Hippolyte Fizeau (1851) mit dem Fizeau-Experiment sehr genau gemessen wurde. Hingegen konnte sich die Theorie von Stokes nicht durchsetzen, da sie sowohl der Aberration als auch dem Ergebnis des Fizeau-Experiments widersprach − die deswegen eingeführten Hilfshypothesen waren nicht überzeugend oder überhaupt widersprüchlich.[13]

 

Albert A. Michelson (1881) versuchte die Relativbewegung von Erde und Äther („Ätherwind“), welche nach Fresnels Theorie hätte auftreten müssen, direkt zu messen. Er konnte jedoch mit seiner Interferometeranordnung das von ihm erwartete Ergebnis nicht feststellen und interpretierte das Ergebnis als Beleg für die These von Stokes (vollständige Äthermitführung durch die Erde) und damit gegen die Theorie Fresnels.[14] Lorentz (1886) wies jedoch nach, dass Michelson bei den Berechnungen ein Rechenfehler unterlaufen war, woraus sich ergab, dass das Experiment zu ungenau war, um im Rahmen der Messgenauigkeit überhaupt ein positives Messresultat zu erbringen, was von Michelson selbst zugegeben wurde.[15] Da die fresnelsche Theorie nun doch nicht widerlegt schien, führten Michelson und Edward W. Morley (1886) ein Experiment durch, bei dem die Messungen Fizeaus zum fresnelschen Mitführungskoeffizienten überprüft werden sollten. Tatsächlich gelang die Bestätigung und entgegen seiner Aussage von 1881 war Michelson diesmal der Meinung, dass damit der ruhende Äther Fresnels bestätigt sei.[16] Dies erforderte allerdings eine Wiederholung des Michelson-Experiments von 1881, wobei zur großen Überraschung von Michelson und Morley dieses heute berühmte Michelson-Morley-Experiment das erwartete positive Resultat abermals nicht lieferte. Wieder schien das Experiment den eigentlich bereits widerlegten stokeschen Äther zu bestätigen und stand im krassen Gegensatz zu dem Versuch von 1886, welcher für den fresnelschen Äther sprach.[17]

 

Woldemar Voigt entwickelte (1887) auf Basis eines elastischen Äthermodells 
(also nicht des elektromagnetischen Modells Maxwells) und im Zuge von Untersuchungen zum Dopplereffekt eine Koordinatentransformation zwischen einem im Äther ruhenden und einem bewegten System. Die Gleichungen der Voigt-Transformation ließen die Wellengleichung unverändert, waren bis auf einen unterschiedlichen Skalenfaktor identisch mit der späteren Lorentz-Transformation und konnten den Michelson-Morley-Versuch erklären. Dabei

beinhalteten sie den später als „Lorentz-Faktor“ bekannten Ausdruck {\displaystyle 1/{\sqrt {1-v^{2}/c^{2}}}} für die y- und z-Koordinaten und eine später als Ortszeit benannte neue Zeitvariable.

Sie waren allerdings nicht symmetrisch und verletzten folglich das Relativitätsprinzip.[18][19]

 

Es zeigte sich jedoch noch eine andere Möglichkeit einer Erklärung ab: Heaviside (1889) und George Frederick Charles Searle (1897) stellten fest, dass elektrostatische Felder in Bewegungsrichtung kontrahiert waren (Heaviside-Ellipsoid).[20] Den Arbeiten Heavisides folgend führte George FitzGerald (1889) die Ad-hoc-Hypothese ein, dass auch materielle Körper in Bewegungsrichtung kontrahieren, was zur Längenkontraktion führt und den Michelson-Morley-Versuch erklären könnte − im Gegensatz zu Voigts Gleichungen wird hier also die x-Koordinate verändert. FitzGerald begründete dies damit, dass die intermolekularen Kräfte möglicherweise elektrischen Ursprungs seien. Jedoch wurde seine Idee vorerst nicht zur Kenntnis genommen und erst durch eine Veröffentlichung von Oliver Lodge (1892) bekannt.[21] Unabhängig von FitzGerald schlug auch Lorentz (1892b) dieselbe Hypothese vor („FitzGerald-Lorentzsche Kontraktionshypothese“). Aus Plausibilitätsgründen verwies er wie FitzGerald auf die Analogie zur Kontraktion der elektrostatischen Felder, wobei er jedoch selbst zugab, dass das keine zwingende Begründung war.[22][23]

2.3. Die 1895-Theorie von Lorentz

Hendrik Antoon Lorentz legte 1892[24] und vor allem 1895 die Fundamente der (maxwell-) lorentzschen Elektrodynamik bzw. Äther- oder Elektronentheorie, indem er wie andere vor ihm neben dem Äther auch die Existenz von Elektronen annahm. Dabei ging er davon aus, dass der Äther vollständig in Ruhe sei und nicht von den Elektronen mitgeführt wird. Daraus ergab sich die wichtige Konsequenz, dass die Lichtgeschwindigkeit vollständig unabhängig von der Geschwindigkeit der Lichtquelle ist und folglich relativ zu einem Koordinatensystem, in dem der Äther ruht, unter allen Umständen konstant ist. Statt dabei irgendwelche Aussagen über die mechanische Natur des Äthers und der elektromagnetischen Prozesse zu machen, versuchte er umgekehrt, viele mechanische Prozesse auf elektromagnetische zurückzuführen. Im Rahmen seiner Theorie errechnete Lorentz (wie Heaviside) die Kontraktion der elektrostatischen Felder und führte dazu, unabhängig von Voigt, als mathematische Hilfsvariable die Ortszeit ein. Somit verfügte er über eine Vorform der später als Lorentz-Transformation bekannten Gleichungen, welche zur Erklärung aller negativen Ätherdriftexperimente für Größen erster Ordnung von v/c diente. Dabei verwendete er (1895) den Begriff „Theorem der korrespondierenden Zustände“, d. h. die Lorentz-Kovarianz der elektromagnetischen Gleichungen für relativ geringe Geschwindigkeiten. Daraus folgt, dass die Form der elektromagnetischen Gleichungen eines „realen“ – im Äther ruhenden – Systems der Form eines „fiktiven“ – im Äther bewegten – Systems entspricht. Jedoch erkannte Lorentz, dass seine Theorie gegen das Prinzip von actio und reactio verstieß, da zwar der Äther auf die Materie wirken, jedoch die Materie nicht auf den Äther zurückwirken konnte.[25]

 

Joseph Larmor (1897, 1900) entwarf ein sehr ähnliches Modell wie Lorentz, jedoch ging er einen Schritt weiter und brachte die Lorentz-Transformation in eine algebraisch äquivalente Form, wie sie bis heute benutzt wird. Dabei sah er, dass nicht nur die Längenkontraktion daraus abgeleitet werden kann, sondern er berechnete auch eine Art Zeitdilatation, wonach Rotationen von im Äther bewegten Elektronen langsamer ablaufen als bei ruhenden Elektronen.[26] Larmor konnte jedoch nur zeigen, dass diese Transformation zwar für Größen zweiter Ordnung, nicht jedoch für alle Ordnungen gültig ist. Auch Lorentz (1899) erweiterte seine Transformation für Größen zweiter Ordnung (mit einem allerdings unbestimmten Faktor) und vermerkte, wie Larmor zuvor, eine Art Zeitdilatation. Unbekannt ist, inwiefern sich Lorentz und Larmor gegenseitig beeinflusst haben; das heißt, es ist nicht klar, ob Larmor (1897) die Ortszeit von Lorentz übernommen hat, und ob umgekehrt Lorentz (1899) die vollständigen Transformationen von Larmor übernommen hat. Beide zitieren zwar die Werke des anderen und standen in brieflichem Kontakt, jedoch diskutierten sie nicht über die Lorentz-Transformation.[19]

 

Es gab jedoch auch Alternativmodelle zu den Theorien von Lorentz und Larmor. Emil Cohn (1900) entwarf eine Elektrodynamik, worin er als einer der Ersten die Existenz des Äthers (zumindest in bisheriger Form) verwarf und stattdessen, wie Ernst Mach, die Fixsterne als Bezugskörper verwendete. So konnte er zwar das Michelson-Morley-Experiment erklären, da die Erde relativ zu den Fixsternen in Ruhe ist, jedoch konnte nach seiner Theorie die Lichtgeschwindigkeit in Medien gleichzeitig in verschiedenen Richtungen überschritten werden. Wegen dieser und anderer Unstimmigkeiten wurde die Theorie (auch von Cohn selbst) später verworfen. Darüber hinaus diskutierte er auch die Theorie von Lorentz und verwendete den Begriff „Lorentz'sche Transformation“.[27]

2.4. Elektromagnetische Masse

Joseph John Thomson (1881) erkannte während seiner Weiterentwicklung der maxwellschen Elektrodynamik, dass elektrostatische Felder sich so verhalten, als ob sie den Körpern neben der mechanischen eine „elektromagnetische Masse“ hinzufügen würden. Dies wurde damals als das Ergebnis einer Selbstinduktion der Konvektionsströme im Äther interpretiert. Er erkannte auch, dass diese Masse bei bewegten Körpern (um einen allerdings für alle positiven Geschwindigkeiten gleichen Faktor) größer wird.[28][10] Vor allem George FitzGerald, Oliver Heaviside, und George Frederick Charles Searle korrigierten einige Fehler und führten die Arbeit von Thomson fort – wobei als Ausdruck für die elektromagnetische Masse sich die Formel (in moderner Notation) {\displaystyle m=(4/3)E/c^{2}}m= (4/3)*E/c² ergab. Heaviside (1888) erkannte überdies, dass die Zunahme der elektromagnetischen Masse bei bewegten Körpern keineswegs konstant ist, sondern bei größerer Geschwindigkeit immer weiter zunimmt. Searle (1897) folgerte daraus, dass dies ein Überschreiten der Lichtgeschwindigkeit unmöglich macht, da unendlich viel Energie dafür erforderlich wäre. Dieser Zusammenhang wurde 1899 auch von Lorentz in seine Theorie integriert. Er bemerkte, dass diese aufgrund der Lorentz-Transformation nicht nur mit der Geschwindigkeit, sondern auch mit der Richtung variiert und führte die später von Max Abraham als longitudinale und transversale Masse bekannt gewordenen Terme ein – wobei nur die transversale Masse dem später als relativistische Masse bezeichneten Begriff entsprach.[29]

 

Wilhelm Wien (1900) (und vor ihm schon Larmor und Emil Wiechert) vertrat auf Basis der Theorie von Lorentz die Ansicht, dass – entgegen dem „mechanistischen Weltbild“ von Hertz – sämtliche Kräfte der Natur elektromagnetisch erklärbar seien („elektromagnetisches Weltbild“).[30] Entsprechend nahm er an, dass die gesamte Masse elektromagnetischen Ursprungs sei. Das heißt, für Wien galt die Formel {\displaystyle m=(4/3)E/c^{2}} m= (4/3)*E/c²  – die Thomson (darin Heaviside und Searle folgend) verwendete – für die gesamte Masse der Materie. Auch vermerkte er, dass die Gravitation der elektromagnetischen Energie proportional sein müsse, falls sie ebenfalls auf elektromagnetische Energie zurückgeführt werden könnte. Und in derselben Zeitschrift leitete Henri Poincaré (1900b) aus den erwähnten maxwellschen Spannungen und der Theorie von Lorentz den elektromagnetischen Impuls ab und folgerte in Verbindung mit dem Reaktionsprinzip, dass die elektromagnetische Energie einer „fiktiven“ Masse von {\displaystyle m=E/c^{2}}m = E/c² bzw. E=mc²{\displaystyle E=mc^{2}} entsprach – wobei Poincaré diese Begriffe als mathematische Fiktionen ansah. Er stieß dabei jedoch auf ein Strahlungs-paradoxon, das erst später von Einstein befriedigend gelöst wurde.[31]

 

Walter Kaufmann (1901–1903) war nun der Erste, der die Geschwindigkeitsabhängigkeit der elektromagnetischen Masse experimentell bestätigte. Dabei wurde ein Kathodenstrahl von Elektronen aus Metallen erzeugt, sodass Verhältnisse von Ladung, Geschwindigkeit und Masse bestimmbar wurden. Da vorher schon bekannt war, dass die Ladung eines Elektrons von seiner Geschwindigkeit unabhängig ist, konnte das von Kaufmann experimentell gezeigte Ergebnis einer Abnahme des Ladungs-Masse-Verhältnisses für Geschwindigkeiten nahe der Lichtgeschwindigkeit nur auf eine Massenzunahme der untersuchten Elektronen zurückgeführt werden. Dabei glaubte Kaufmann, dass seine Messungen bewiesen hätten, dass die gesamte Masse der Materie elektromagnetischen Ursprungs sei.[32]

 

Max Abraham (1902–1903), der wie Wien ein überzeugter Anhänger des elektromagnetischen Weltbildes war, legte dazu eine Erklärung vor und führte die von Lorentz begonnene Theorie fort. So war er der Erste, der ein feldtheoretisches Konzept der Elektronen vorlegte. Im Gegensatz zu Lorentz definierte er das Elektron jedoch als starres, kugelförmiges Gebilde und lehnte dessen Kontraktion ab, weshalb auch seine Massen-Terme von den von Lorentz gebrauchten differierten (wobei Abraham als Erster die Begriffe longitudinale und transversale Masse prägte). Zusätzlich führte er Poincaré folgend den Begriff des „elektromagnetischen Impulses“ ein, der proportional zu {\displaystyle E/c^{2}}E/c² ist. Im Gegensatz zu Poincaré und Lorentz verstand er diesen jedoch als reale physikalische Entität. Abrahams Theorie wurde in den nächsten Jahren das wichtigste Konkurrenzmodell zu der Theorie von Lorentz. Kaufmanns Experimente waren jedoch zu ungenau, um eine Entscheidung zwischen den Theorien herbeizuführen.[33]

 

Schließlich verband Friedrich Hasenöhrl (1904) Energie mit Trägheit in einer Schrift, die nach seinen eigenen Worten sehr ähnlich denen von Abraham war. Hasenöhrl nahm an, dass ein Teil der Masse eines Körpers (die „scheinbare Masse“) als Strahlung in einem Hohlkörper aufgefasst werden kann. Die Trägheit dieser Strahlung ist proportional zu ihrer Energie nach der Formel {\displaystyle m=(8/3)E/c^{2}}m = (8/3)*E*c². Er bemerkte dazu den engen Zusammenhang von mechanischer Arbeit, Temperatur und scheinbarer Masse, da bei jeder Erwärmung Strahlung und somit zusätzliche Trägheit entsteht. Jedoch schränkte Hasenöhrl diese Energie-scheinbare-Masse-Beziehung auf strahlende Körper ein; das hieß für Hasenöhrl, wenn ein Körper eine Temperatur hat, die größer ist als 0 Kelvin. Jedoch veröffentlichte er (1905) die Zusammenfassung eines Briefes, den Abraham an ihn geschrieben hatte, in dem Abraham das Ergebnis bemängelte und als korrigierten Wert für die scheinbare Masse m= (4/3)*E/c²{\displaystyle m=(4/3)E/c^{2}} angab, also den gleichen Wert wie für die bereits bekannte elektromagnetische Masse. Hasenöhrl überprüfte seine eigenen Berechnungen und bestätigte Abrahams Resultat.[34]

2.5. Absoluter Raum und absolute Zeit

Newtons Definition des absoluten Raumes und der absoluten Zeit wurde nun von einigen Autoren hinterfragt.[35][36] Beispielsweise führte Carl Gottfried Neumann (1870) statt irgendwelcher absoluter Größen einen „Körper Alpha“ ein, der einen starren und fixen Bezugskörper darstellen soll, auf den die inertiale Bewegung bezogen werden kann. Ernst Mach (1883) argumentierte, dass Begriffe wie absoluter Raum und Zeit sinnlos seien und dass nur der Bezug auf relative Bewegung sinnvoll sei. Er meinte auch, dass selbst beschleunigte Bewegung wie Rotation durch Bezug auf „ferne Massen“ relativierbar sei, ohne einen absoluten Raum annehmen zu müssen. Die Argumentation von Neumann wurde von Heinrich Streintz (1883) fortgesetzt. Wenn Messungen durch Gyroskope keine Rotation anzeigen, könne man nach Streintz von einer inertialen Bewegung in Bezug auf einen „Fundamentalkörper“ bzw. ein „Fundamental-Koordinatensystem“ sprechen. Schließlich war Ludwig Lange (1885) der Erste, der von ähnlichen Gedankengängen ausgehend den Begriff Inertialsystem einführte, um damit absolute Größen aus der Kinematik zu entfernen. Er definiert dies als „ein System von der Beschaffenheit, dass mit Bezug darauf die in einem Punkt zusammenlaufenden, stetig beschriebenen Bahnen dreier gleichzeitig von demselben Raumpunkte projizierter und sofort sich überlassener Punkte (die aber nicht in einer Geraden liegen sollen) sämtlich geradlinig sind“. Weiterhin veröffentlichte Poincaré (1902) das philosophische und populärwissenschaftliche 
Buch „Wissenschaft und Hypothese“, welches u. a. enthielt: Philosophisches über die Relativität von Raum, Zeit und Gleichzeitigkeit; die Ausdrücke „Prinzip der relativen Bewegung“ und „Prinzip der Relativität“; die Meinung, dass der Äther niemals entdeckt werden könne, d. h. die Gültigkeit des Relativitätsprinzips; die mögliche Nichtexistenz des Äthers – allerdings auch Argumente für den Äther; ausführliche Schilderungen über die nichteuklidische Geometrie.

 

Auch über die Zeit als eine vierte Dimension wurde spekuliert.[37][38] Beispielsweise tat dies bereits 1754 Jean d’Alembert in der Encyclopédie, sowie einige Autoren im 19. Jahrhundert wie H. G. Wells in seinem Roman Die Zeitmaschine (1895). Und Menyhért Palágyi (1901) entwickelte ein philosophisches Modell, wonach Raum und Zeit lediglich sprachliche Bezeichnungen für eine in Wirklichkeit einheitliche „Raumzeitform“ sei.[39] Dabei benutzt er für seine „Raumzeitlehre“ die Zeit als vierte Dimension, die bei ihm bereits die Form it (i bezeichnet die imaginäre Einheit) hatte. Jedoch bestand in Palágyis Philosophie kein Zusammenhang zur lorentzschen Ortszeit, denn bei ihm ist die Zeitdimension nicht von der Lichtgeschwindigkeit abhängig. Er verwarf auch jeglichen Zusammenhang mit den bereits vorhandenen Konstruktionen von n-dimensionalen Räumen und der nicht-euklidischen Geometrie. Bezeichnenderweise lehnte Palágyi später (1915) auch die Raumzeit-Konstruktionen von Minkowski und Einstein ab – deswegen wird Palágyis Kritik als haltlos angesehen und geurteilt, dass seine Theorie nicht viel mit der Relativitätstheorie zu tun habe.[40]

2.6. Prinzip der relativen Bewegung und Uhrensynchronisation

In der zweiten Hälfte des 19. Jahrhunderts war man intensiv damit beschäftigt, ein weltweites mit elektrischen Signalen synchronisiertes Uhrennetzwerk aufzubauen, wobei auch bereits die Endlichkeit der Lichtgeschwindigkeit berücksichtigt wurde. Daraus zog Henri Poincaré (1898) folgenreiche Konsequenzen für Philosophie und Physik. Er stellte fest, dass die Synchronisation mit Lichtsignalen eine Bedeutung für die Definition der Gleichzeitigkeit an verschiedenen Orten an sich hatte, und deshalb die Definition der Gleichzeitigkeit eine reine, auf Bequemlichkeit beruhende Konvention sei. Dabei argumentierte er, dass die Annahme einer konstanten Lichtgeschwindigkeit in alle Richtungen (z. B. für astronomische Zwecke) als „Postulat“ vorteilhaft sei, um Gesetzen wie dem newtonschen Gravitationsgesetz eine möglichst einfache Form zu geben.[41] In weiteren Arbeiten erklärte Poincaré (1895, 1900a), dass er nicht an eine absolute Bewegung bzw. die Entdeckung einer Bewegung gegenüber dem Äther glaube, und nannte diese Auffassung „Prinzip der relativen Bewegung“.[42] Im selben Jahr (1900b) erkannte Poincaré, dass man die lorentzsche Ortszeit dadurch definieren kann, dass zwei Beobachter mit Lichtsignalen ihre Uhren synchronisieren (Poincaré-Einstein-Synchronisation). Wenn sie aufgrund des Relativitätsprinzips davon ausgehen, sich in Ruhe zu befinden, so folgern sie, das Licht sei in beide Richtungen gleich schnell unterwegs. Wären sie hingegen gegenüber dem Äther bewegt, würden sie damit einen Fehler machen und die Uhren könnten nicht synchron sein (Relativität der Gleichzeitigkeit). Somit definierte Poincaré die Ortszeit als etwas, was physikalisch interpretiert und mit Uhren angezeigt werden kann – im klaren Gegensatz zur rein mathematischen Interpretation von Lorentz.[43]

 

Alfred Bucherer (1903) erklärte wie Poincaré, dass nur noch Relativbewegungen der Körper untereinander, nicht jedoch zum Äther feststellbar sind. Im Gegensatz zu Poincaré zog er daraus jedoch den Schluss, dass der Begriff des Lichtäthers dann überhaupt verworfen werden sollte. Die von Bucherer nachfolgend konstruierte Theorie war jedoch sowohl aus experimentellen als auch inhaltlichen Gründen unbrauchbar – ebenso zog Bucherer trotz Verwerfung des Ätherbegriffs keine Konsequenzen in Bezug zur Relativität von Raum und Zeit.[44]

2.7. Die 1904-Theorie von Lorentz

Unter dem Einfluss von Poincarés Forderung nach der Unentdeckbarkeit einer absoluten Bewegung kam Lorentz (1904b) schließlich einer Komplettierung seines Theorems der korrespondierenden Zustände sehr nahe. Er entwickelte ebenso wie Abraham ein feldtheoretisches Konzept der Elektronen, welches jedoch im Gegensatz zu Abraham die Kontraktion der Elektronen und somit das Relativitätsprinzip zu berücksichtigen versuchte. Dadurch konnte er unter Verwendung des elektromagnetischen Impulses das negative Resultat des Trouton-Noble-Experiments (1903) erklären, bei dem ein Drehmoment 
aufgrund des Ätherwindes erwartet worden war. Ebenso konnten die negativen Resultate der Experimente von Rayleigh und Brace (1902, 1904) zur 
Doppelbrechung erklärt werden. Ein weiterer wichtiger Schritt war, dass er die Gültigkeit der Lorentz-Transformation auf nicht-elektrische Kräfte (sofern diese existieren) ausdehnte. Lorentz gelang es jedoch nicht, die vollständige Lorentz-Kovarianz der elektromagnetischen Gleichungen zu zeigen.[45]

 

Ungefähr zur gleichen Zeit als Lorentz seine Theorie entwarf, stellte Wien (1904a) wie vor ihm Searle (1897) fest, dass aufgrund der Geschwindigkeitsabhängigkeit der Masse eine Überschreitung der Lichtgeschwindigkeit unendlich viel Energie erfordert, also unmöglich ist. Und nachdem ihm die endgültige Fassung von Lorentz’ Theorie vorlag, folgerte er (1904b) dasselbe aus der Längenkontraktion, da bei Überlichtgeschwindigkeit die Länge eines Körpers einen imaginären Wert annehmen würde.[46]

 

Abraham (1904) zeigte jedoch einen fundamentalen Defekt in der lorentzschen Theorie auf. Diese Theorie war einerseits so konstruiert, dass das Relativitätsprinzip erfüllt ist, aber auch der elektromagnetische Ursprung aller Kräfte sollte aufgezeigt werden. Abraham zeigte, dass beide Annahmen nicht verträglich sind, da in der lorentzschen Theorie die kontrahierten Elektronen eine nicht-elektrische Bindungsenergie benötigten, die die Stabilität der Materie garantiert. In Abrahams Theorie des starren Elektrons war eine solche Energie nicht notwendig.[47] Es stellte sich nun also die Frage, ob das elektromagnetische Weltbild (verträglich mit Abrahams Theorie) oder das Relativitätsprinzip (verträglich mit Lorentz’ Theorie) korrekt war.[29][48]

 

Bereits unter Berücksichtigung der neuen Theorie von Lorentz definierte Poincaré (1904) in einer Rede im September in St. Louis (durch Verbindung des galileischen Relativitätsprinzips mit dem lorentzschen Theorem der korrespondierenden Zustände) das „Prinzip der Relativität“ als eine Forderung, dass die Naturgesetze für alle Beobachter die gleichen sein müssen, unabhängig davon, ob sie sich bewegen oder nicht und deswegen ihr absoluter Bewegungszustand unbekannt bleiben müsse. Er präzisierte seine Uhrensynchronisationsmethode durch Licht und damit seine physikalische Interpretation der Ortszeit und erklärte, dass womöglich eine „neue Methode“ bzw. „neue Mechanik“ kommen werde, welche auf der Unüberschreitbarkeit der Lichtgeschwindigkeit (auch für relativ zum Äther bewegte Beobachter) beruhe. Er vermerkte jedoch kritisch an, dass sowohl das Relativitätsprinzip, Newtons actio und reactio, der Massenerhaltungssatz als auch der Energieerhaltungssatz 
keineswegs gesichert seien.[49]

 

Im November (1904) zeigte Cohn Möglichkeiten für eine physikalische Interpretationen der lorentzschen Theorie auf (welche er mit seiner eigenen verglich). Dabei verwies er auf den engen Zusammenhang mit der Messung durch Maßstäbe und Uhren. Ruhen diese im lorentzschen Äther, zeigen sie die „wahren“ Längen und Zeiten an, und sind sie bewegt, zeigen sie kontrahierte bzw. dilatierte Werte an. Wie Poincaré machte Cohn die wichtige Feststellung, dass die Ortszeit dann zustande kommt, wenn Licht sich auf der Erde als Kugelwelle ausbreitet, d. h. die Lichtausbreitung auf der Erde als isotrop angenommen wird. Im Gegensatz zu Lorentz und Poincaré stellte Cohn nun fest, dass die Unterscheidung zwischen „wahren“ und „scheinbaren“ Koordinaten in der lorentzschen Theorie sehr künstlich anmutet, da kein Experiment den wahren Bewegungszustand aufzeigen kann und alle Koordinaten gleichberechtigt sind. Dagegen glaubte Cohn, dass dies alles nur für den Bereich der Optik gültig sei, wohingegen mechanische Uhren die „wahre“ Zeit anzeigen könnten.[27]

2.8. Poincarés Dynamik des Elektrons

Am 5. Juni 1905 legte Poincaré schließlich die Zusammenfassung einer Arbeit vor, welche formal die vorhandenen Lücken von Lorentz’ Arbeit schloss. Diese Schrift enthielt zwar viele Ergebnisse, jedoch nicht die Herleitungen seiner Betrachtungen, wobei wesentliche Teile[50] davon bereits in zwei Briefen enthalten waren, welche von Poincaré ca. Mai 1905 an Lorentz geschrieben wurden.[51][52] Er sprach vom Postulat der völligen Unmöglichkeit der Entdeckung einer absoluten Bewegung, welches scheinbar ein Naturgesetz sei. Er erkannte den Gruppencharakter der von ihm als Ersten so bezeichneten Lorentz-Transformation, er gab ihr die moderne symmetrische Gestalt und unter Benutzung der relativistischen Geschwindigkeitsaddition korrigierte er Lorentz’ Terme für Ladungsdichte und Geschwindigkeit und erreichte damit die volle Lorentz-Kovarianz. Lorentz folgend erklärte er, dass die Lorentz-Transformation (und damit die Lorentz-Invarianz) auf alle Kräfte der Natur angewendet werden müsse. Aber im Gegensatz zu Lorentz behandelte er auch die Gravitation und behauptete die Möglichkeit eines Lorentz-invarianten Gravitationsmodells und erwähnte die Existenz von Gravitationswellen. Um die Kritik von Abraham zu entkräften, führte Poincaré einen nicht-elektrischen Druck ein (die „Poincaré-Spannungen“), welcher die Stabilität des Elektrons garantieren soll und womöglich auch die Längenkontraktion dynamisch begründen sollte. Damit gab Poincaré jedoch das elektromagnetische Weltbild zugunsten des Relativitätsprinzips auf.[29][53]

 

Schließlich übermittelte Poincaré (vorgelegt am 23. Juli, gedruckt am 14. Dezember, veröffentlicht im Januar 1906) unabhängig von Einstein seine als Palermo-Arbeit bekannt gewordene Schrift, welche eine deutlich erweiterte Fassung von Poincarés erster 1905-Arbeit darstellte. Er sprach von dem „Postulat der Relativität“; er zeigte, dass die Transformationen eine Konsequenz des Prinzips der kleinsten Wirkung sind, und er demonstrierte ausführlicher als vorher deren Gruppeneigenschaft, wobei er den Namen Lorentz-Gruppe („Le groupe de Lorentz“) prägte. Er behandelte detailliert die Eigenschaften der Poincaré-Spannungen. Im Zusammenhang mit seiner Gravitationsauffassung (welche sich allerdings als unzureichend erwies) zeigte Poincaré, dass die Kombination {\displaystyle x^{2}+y^{2}+z^{2}-c^{2}t^{2}}x² + y² + z² - c²t² invariant ist und führte dabei den Ausdruck ict (im Gegensatz zu Palágyi also mit Lichtgeschwindigkeit) als vierte Koordinate eines vierdimensionalen Raums ein – er benutzte dabei eine Art von Vierervektor. Allerdings merkte Poincaré 1907 an, dass eine Neuformulierung der Physik in eine vierdimensionale Sprache zwar möglich, aber zu umständlich ist und deshalb geringen Nutzen habe, weshalb er seine diesbezüglichen Ansätze nicht weiterverfolgte – dies wurde später erst durch Minkowski getan. Und im Gegensatz zu Einstein hielt Poincaré weiterhin am Konzept des Äthers fest.[54][55]

3. Spezielle Relativitätstheorie


Impressum | Datenschutz | Cookie-Richtlinie | Sitemap
Diese Website darf gerne zitiert werden, für die Weiterverwendung ganzer Texte bitte ich jedoch um kurze Rücksprache.